

Secure Headless Database

Infrastructure Using VirtualBox
A virtualized Linux setup with SSH-only access

and centralized remote control

PROJECT SUMMARY

This project demonstrates the setup of a secure,

headless MySQL database hosted on a Linux

Desktop VM within Oracle VirtualBox. The system is

designed to prevent any direct local access, relying

solely on a Linux Server VM to manage the database

remotely via SSH key authentication. Security

measures include disabling GUI and TTY logins,

firewall rule enforcement, restricted sudo access,

and SSH hardening. The result is a locked-down

environment ideal for secure data handling and

administrative isolation in virtualized lab

environments.

Tebogo Matseding
Project

1st time logging into Desktop

Sudo Apt Update

MySQL Installation

MySQL Status

Create Client Databases

Creating Table Format

Data Entries of Client Information

Data Entries of Client Information

Network Configurations

Installing UFW

Assigning port 22 to my Server

Installing OpenSSH-Server

SSH Security Configurations

 PermitRootLogin no

 PasswordAuthentication no

 AllowUser Admin@192.168.1.68

Verifying Changes Didn’t Break SSH

Verifying Root Login is Denied

Disable GUI (sudo systemctl mask gdm3)

Verifying GUI is disabled

Verifying Server IP Address

Installing OpenSSH-Client

Generating SSH-Key (w Passphase)

Granting Server Sudo Privileges (Admin:192.168.1.69:)

Login Into Database Server

Masking Services (sudo systemctl mask getty@tyy1.services through to 6)

Verifying Masking Services

Project Architecture Illustration Summary

Additional Security Risks to Address

mailto:getty@tyy1.service

START
The purpose of this project is not only to
demonstrate hands-on experiences but
to be used as a guide for those looking
to complete a similar project (I will be
linking a video of how to install the
software we will be using to complete
our task/project)

• Installing Oracle VirtualBox on Windows

• Installing Oracle VirtualBox on Mac

• Installing Linux Desktop on Oracle VirtualBox

• Installing Ubuntu Server on Oracle VirtualBox

1st time logging into Desktop

The initial login to the Ubuntu
Desktop VM was completed
successfully using the configured
user account.

Sudo Apt Update

After logging into the Desktop VM,
the system was updated using sudo
apt update to ensure all packages
and security dependencies were up
to date.

MySQL Installation

MySQL Server was installed on the
Desktop VM to manage client data in
a secure and structured relational
format.

MySQL Status

The status of the MySQL service
was checked to confirm it was active
and running properly.

https://youtu.be/homRENM8KVY?si=Lx84j2ORqxN624z3
https://youtu.be/RG16KcXNUnY?si=SJBJ_lHkhaWVpCPH
https://youtu.be/Hva8lsV2nTk?si=WrJCS0ruXuX0plkz
https://youtu.be/r1DCX_VPnM0?si=slyLqWtV648mQjGI

Create Client Databases

Databases were created to store
Visiomedia client information using
basic SQL commands from the
terminal.

Creating Table Format

Sample client data was added to the
database to simulate a real-world
scenario with multiple entries.

Data Entries of Client Information

Sample data was inserted into the
database to simulate real Visiomedia
client records.

Data Entries of Client Information

Another sample

Network Configurations

Both VMs were assigned static IP
addresses within a NAT network to
ensure consistent communication.

Installing UFW

The Uncomplicated Firewall (UFW)
was installed on the Desktop VM to
restrict incoming connections.

Assigning port 22 to my Server

Port 22 was allowed through UFW to
permit SSH access only from the
Server VM.

Installing OpenSSH-Server

The OpenSSH server was installed
and configured to accept secure,
key-based SSH connections.

SSH Security Configurations

This directive in the SSH
configuration (/etc/ssh/sshd_config)
prevents the root user from logging
in directly over SSH. This is a key
security measure that reduces the
risk of brute-force attacks against the
root account. Instead, administrative
actions must be performed using a
standard user with sudo privileges.

PasswordAuthentication no

This disables password-based login
entirely, enforcing SSH key-based
authentication. It prevents attackers
from attempting to guess or brute-
force user passwords over SSH.
Only users with a valid SSH private
key (and matching public key on the
server) can access the system.

AllowUsers admin@192.168.1.68

This line strictly limits who can SSH
into the machine. It specifies that
only the admin user from IP address
192.168.1.68 (the Server VM) is
allowed to initiate an SSH session.
All other users or source IPs will be
denied access, even if they have
valid keys or credentials.

Verifying Changes Didn’t Break SSH

A connection test was performed to
confirm SSH access still worked after
security settings were applied.

Verifying Root Login is Denied

An SSH attempt as root was denied,
confirming that root login was
successfully disabled.

Disable GUI

The graphical login manager was
masked, disabling all GUI access on
the Desktop VM.

Verifying GUI is disabled

Upon reboot, the Desktop system
showed no GUI, confirming the
machine was operating in headless
mode.

Login into Server

The Server VM was accessed using
its local user account in VirtualBox.
This system serves as the
centralized administrator,
responsible for managing the
Desktop VM. Once logged in, all
secure configurations and SSH key
operations were carried out from this
machine.

Verifying Server IP Address

The IP address of the Server VM
was verified using ip a and
hostname -I, confirming correct
network placement.

Installing OpenSSH-Client

The OpenSSH client was installed on
the Server VM to enable key
generation and outbound SSH
connections.

Generating SSH-Key (w Passphase)

An SSH key pair was generated on
the Server with a secure passphrase
for enhanced security.

Copying SSH key to Database

Server

After generating the SSH key pair on
the Server VM, the public key was
copied to the Desktop VM using the
ssh-copy-id command. This placed
the public key in the
~/.ssh/authorized_keys file on the
Desktop, enabling secure,
passwordless login from the Server.

Granting Server Sudo Privileges

Access rules were defined using
access.conf to allow only the Server
to use sudo on the Desktop.

Login Into Database Server

SSH access was tested from the
Server into the Desktop VM using
the generated SSH key.

Masking Services

TTY services were masked to
prevent logins via Ctrl+Alt+F1
through F6 on the Desktop.

Verifying Masking Services

A reboot confirmed that all masked
services were disabled and local
access was completely blocked.

Project Architecture Illustration Summary

The illustration below represents the secure, headless database infrastructure designed and

implemented during this project. It shows the two virtual machines configured in Oracle

VirtualBox: a Linux Desktop VM hosting the MySQL database and a Linux Server VM that

acts as the sole administrative controller. The diagram highlights the SSH key-based

authentication, disabled local access, firewall configuration, and PAM restrictions that

enforce remote-only management. This setup simulates a real-world centralized

management model with minimal attack surface and strict access control.

Additional Security Risks to Address

Lack of Encrypted Database Communication

MySQL currently accepts connections on port 3306 without SSL. Enabling SSL/TLS

encryption would protect sensitive client data in transit, even within a virtualized

internal network.

No Intrusion Detection or Logging Mechanism

The system lacks tools to monitor for unauthorized login attempts, file changes, or

privilege escalation. Adding auditd or fail2ban would provide early warning of

suspicious behavior.

No Automatic Backup or Recovery Plan

The database currently lacks scheduled backups or recovery testing. Implementing a

backup script or replication system would prevent data loss in case of system failure

or corruption.

