
Hardened MySQL Deployment:

Encrypted Communication, Access

Control, and Backup Strategy

2025

MYSQL HARDENING VIA TLS, ACCESS RESTRICTION, AND
ENCRYPTED BACKUPS
TEBOGO MATSEDING

1st Login

Installing MySQL Secure Installation

Create a Certificate Authority (CA)

Create the MySQL Server Certificate (Step 1)

Create the MySQL Server Certificate (Step 2)

Create the MySQL Server Certificate (Step 3)

Create the MySQL Server Certificate (Step 4)

Verify SSL/TLS certs

Configure MySQL to Use SSL

Restart MySQL

Verify SSL is Active

Test Remote Admin can connect via SSL Encryption

Installing Fail2Ban

Edit Local Jail Config File

Verify Jail is Active

Installed Auditd

Auditd Status

Track writes/changes to MySQL directory

Log every sudo command run

Log Review Using ausearch

Creating New Server for Backups

Installing MySQL-client on Backup Server

Added Backup Server to the UFW

Create a MySQL user for Backup Server

Granting Backup Server Privileges

Backup Server Connecting to MySQL

Create mysqldump script

Test Script

Set crontab -e to automate backup

Crontab -l to verify it has been set

START
*NOTE
This is a continuation from my previous project
“Secure Headless Database Infrastructure Using
VirtualBox” if you haven’t seen it, please click the
link on the right of the table and it will direct you
straight there, however if you have already seen
it lets continue on

1st Login

Started by logging into the Remote Admin
Server via SSH. This server acts as the
secure entry point into the internal network
and is the only machine allowed to
communicate directly with the MySQL
database server. From here, all configuration
and monitoring tasks were performed.

Installing MySQL Secure Installation

After installing MySQL, I ran the secure
installation wizard. It's a good way to clean up
the default settings I removed anonymous
users, disabled root access over the network.
Making sure MySQL didn’t come with any
open doors.

Create a Certificate Authority (CA)

Before enabling SSL, I needed a Certificate
Authority. This is what signs all the other
certificates in the setup it is kind of like
creating my own internal trust system.

Create the MySQL Server Certificate

Generated a private key for the MySQL
server. This key stays on the server and
identifies it securely during
SSL handshakes.

Create the MySQL Server Certificate step

2

Created a certificate signing request (CSR)
based on the private key. This file is basically
a formal request to the CA to get a proper
certificate for the server.

Create the MySQL Server Certificate step

3

Signed the CSR using my CA to produce the
actual server certificate. This is what MySQL
uses to prove its
identity to clients.

Create the MySQL Server Certificate step

4

Locked down the file permissions on all
certificate files, then placed them in a secure
location where MySQL could access them
without leaving them exposed.

Verify SSL/TLS certs

Double-checked that the certificate chain was
valid and all the files were working together
properly, just to verifying everything was
trusted and not expired or mismatched.

Configure MySQL to Use SSL

Added the certificate paths to MySQL’s config
file so it knows where to look when SSL
connections are requested. This basically
tells MySQL to enforce secure
communication.

Restart MySQL

Restarted the MySQL service to load all the
new SSL settings.

Verify SSL is Active

Connected to the MySQL server and
confirmed that SSL was active by checking
the variables. Everything
showed up as expected, so encryption was
working.

Test Remote Admin can connect via SSL

Encryption

Ran a test from a remote machine using the
right SSL certificates. The goal here was to
make sure that no one can connect without
valid encryption the connection worked only
when all certs were correct.

Installing Fail2Ban

Installed Fail2Ban to protect against brute-
force attacks. It reads log files and blocks IPs
that fail too many times. Simple but super
effective.

Edit Local Jail Config File

Tweaked the jail config to monitor MySQL
login attempts specifically. This included
adjusting the ban time and the number of
allowed failures.

Verify Jail is Active

Confirmed that the jail was enabled and
running. The MySQL filter was active and
ready to take action if
someone tried to mess around.

Installed Auditd

Installed Auditd so I could track important
system events, especially related to MySQL
file access and
sudo commands.

Auditd Status

Made sure the Auditd service was active and
running without errors. It had to be fully
operational to start
logging events.

Track writes/changes to MySQL directory

Set up a rule in Auditd to monitor any write or
change operations inside the MySQL data
directory. If anything changes in that folder, it
gets logged — no exceptions.

Log every sudo command run

Added another Auditd rule to log all
commands run with sudo. This helps track
exactly who is doing what

with elevated privileges.

Log Review Using ausearch

Used ausearch to pull up logs based on the
rules I set earlier. This let me see who
accessed MySQL directories and which sudo
commands were executed. Super useful for
auditing

Creating New Server for Backups

Spun up a second server strictly for backups.
It runs headless as well, and is fully isolated
except for the IP whitelist we allow through
the firewall.

Installing MySQL-client on Backup Server

Only installed the MySQL client on the
backup server. No database hosting, just the
ability to connect to the main server and pull
backups.

Added Backup Server to the UFW

On the MySQL server, I updated the firewall
to only allow MySQL connections from the
backup server’s IP address.

Create a MySQL user for Backup Server

Created a new MySQL user specifically for
backups. This user only works from the
backup server’s IP and is forced to use SSL
to connect.

Granting Backup Server Privileges

Gave the backup user just enough privileges
to read and export data — nothing more. It
can’t modify
anything, just dump the database.

Backup Server Connecting to MySQL

Tested the connection using the client-side
certificates. Confirmed that the backup server
could only connect if SSL was used, which
was exactly what I wanted.

Create mysqldump script

Wrote a bash script on the backup server that
uses mysqldump to export the full database
and save it with a timestamp. This makes it
easy to keep track of backup versions.

Test Script

Ran the script manually to make sure it
works. The output was clean, the file was
generated, and everything looked good.

Set Crontab -e to automate backup

Added the script to the system’s crontab so it
runs automatically at 2:30 PM every day. Set
it and forget it.

Project Overview

This deployment was all about locking down a MySQL environment inside a private virtual

network. I used a Remote Admin Server to handle all database management, with tight

firewall rules allowing only necessary ports. MySQL connections were secured using

SSL/TLS encryption, and system activity was monitored with Fail2Ban and Auditd to catch

intrusions and log sensitive actions. A second server handled automated, encrypted

backups, pulling data securely through an SSL tunnel. Everything stays off the public

internet — internal-only communication is enforced end to end.

Crontab -l to verify it has been set

Listed the current cron jobs to confirm the
backup task was properly registered.

Conclusion

The MySQL infrastructure I built is already secure and isolated, but there’s always room to

push things further. Here are five key improvements I’d consider adding next, all focused

specifically on tightening security:

Enable Multi-Factor Authentication (MFA) for SSH Access

Adding 2FA to the Remote Admin Server’s SSH login would make brute-force or credential-

based attacks much harder to pull off.

Implement Centralized Log Aggregation & Alerting

By collecting logs from all servers into a single dashboard, it becomes easier to detect

threats in real time and respond faster.

Off-Site Encrypted Backup Storage

Right now, backups are stored locally. Pushing encrypted copies to a remote location

ensures recovery is possible even if the local server is compromised or damaged.

Encrypt MySQL Data at Rest

Encrypting the storage volumes or data directories protects sensitive information even if

someone gets direct disk access.

Set Up Certificate Expiry Monitoring

Keeping an eye on SSL certificate expiry dates helps avoid downtime or accidental

unencrypted connections when certs silently expire.

