

AUTOMATED AD USER

CREATION USING

POWERSHELL AND CSV
Streamlining user onboarding in Windows Server

environments

Tebogo Matseding

Summary
This project demonstrates how to automate the creation of multiple Active Directory

users using a PowerShell script and a CSV file. The solution simplifies IT onboarding by
generating user accounts, placing them in the correct Organizational Units (OUs), and

assigning them to relevant Security Groups, all without manual setup.

Intro

Set up Network

1st Login

Change the Server IP Address

Change the Server IP Address 2

Verify IP Address is changed

Renaming Server Name

Verify Name Has Changed

Install Active Directory Domain Services

(AD DS) role

Promote the server to a Domain

Controller (Get-Command -Module

addsdeployment)

Promote the server to a Domain

Controller (Install-ADDSForestInstallation)

Verify Installations

Import-Module ActiveDirectory

Creating Organizational Unit

Verify that OUs have been created

Creating Security Groups

Verify that SGs have been created

Create .csv file with users

Create script that automates user

creation & assign them OUs & SGs

Execute Script

Verify users have been created

Filtering users

Login into Office-PC01

Rename Office-PC01

Changing IP Address and DNS

Joining Office-PC01 to domain

Office-PC01 joined the domain

Login in with user

START
Intro
In this project, we set up a Windows
Server 2022 environment from scratch
and automate the process of creating
Active Directory (AD) users using a
PowerShell script and a CSV file. This
simulates real-world IT workflows,
especially useful in organizations
onboarding many users at once.

Set up Network
We start by ensuring our server is
connected to a reliable and isolated
network, either through a virtual switch (in
VirtualBox or Hyper-V) or a real network
environment. A working network
connection is crucial for domain
communications.

1st Login
After installing Windows Server, we log in
for the first time using the local
Administrator account to begin configuring
the server.

Change the Server IP Address
We assign a static IP address to the
server. Static IPs are important for servers
so that other devices on the network can
consistently find and communicate with
them.

Change the Server IP Address 2
Using this exact command New-
NetIPAddress -InterfaceAlias
"Ethernet" -IPAddress 192.168.1.30 -
PrefixLength 24 -DefaultGateway
192.168.1.10

Verify IP Address is changed
We use PowerShell ipconfig to make sure
our static IP and DNS settings are
correctly in place.

Renaming Server Name
The default name (like WIN-XXXX) is
changed to SRV-DC01 to reflect its role
as a domain controller.

Verify Name Has Changed
After restarting the server, we confirm that
the hostname has been updated using
hostname

Install Active Directory Domain

Services (AD DS) role
We install the AD DS role using
PowerShell. This adds the necessary
features for managing users, computers,
and security in a domain environment.

Promote the server to a Domain

Controller

(Get-Command -Module addsdeployment)
We explore the addsdeployment module
to find commands that can promote our
server to a domain controller, such as
Install-ADDSForest.

Promote the server to a Domain

Controller (Install-ADDSForestInstallation)
Using PowerShell, we promote our server
to become the first Domain Controller in a
new forest. This is the backbone of our
domain environment.

Verify Installations
We check that the domain controller
promotion completed successfully by
verifying DNS zones, domain info, and system
logs.

Import-Module ActiveDirectory
Before managing users and groups, we
load the Active Directory module in
PowerShell. This module contains the
commands needed for AD management.

Creating Organizational Units
We use PowerShell to create
Organizational Units (OUs) like "Sales",
"IT", or "HR" to logically organize users
and apply group policies later.

Verify that OUs have been

created
We confirm the OUs exist using
commands like Get-ADOrganizationalUnit
or by listing the directory structure.

Creating Security Groups
We create Security Groups (SGs) within
the OUs. These groups help manage
permissions and access to network
resources.

Verify that SGs have been

created
We verify the groups were created using
Get-ADGroup and ensure they are placed
in the correct OUs.

Create .csv file with users
A CSV file is created with user information
such as First Name, Last Name, Password,
Department and Group. This file will serve as
input for our script.

Create script that automates

user creation & assign them

OUs & SGs
We write a PowerShell script that reads
the CSV file and automatically creates
each user, placing them in the correct OU
and adding them to the appropriate group.

Execute Script
We run the script on the domain controller.
PowerShell processes the CSV and creates all
users in one go it is fast, efficient, and
repeatable.

Verify users have been created
We check that the users exist using Get-
ADUser, and confirm they are in the right
OUs and SGs by checking their
properties.

Filtering users
We use PowerShell filters (e.g., Where-
Object) to search for specific users based
on department, group membership, or
name. This helps validate the structure.

Login into Office-PC01
We now go to a client PC (Office-PC01)
that will join the domain. We first log in
using the local admin account.

Rename Office-PC01
Just like the server, we rename the client
machine to something recognizable (e.g.,
OfficePC01) for better network
management.

Changing IP Address and DNS
We set a static IP and assign the DNS
server to the domain controller’s IP
address so the client can locate the
domain.

Joining Office-PC01 to domain
From Office-PC01, we joined the machine
to the domain visiomedia.local, which is
managed by the domain controller (our
server at 192.168.1.30). This step is
important because it allows the client
computer to become part of the domain
environment and be managed centrally.

Office-PC01 joined the domain
We restart the machine and confirm that it
successfully joined the domain.

Login in with user
Finally, we log in using one of the new AD
user accounts created from the CSV. If
everything works, we’re now running in a
fully domain-integrated environment.

Project Summary

In this project, we set up a Windows Server 2022 environment and automated the creation of

Active Directory (AD) users using PowerShell and a CSV file. We configured the domain

controller, created organizational units (OUs) and security groups, and then used a script to

bulk-add users and assign them to the correct groups and departments.

We also prepared a client machine (Office-PC01), configured its IP and DNS settings, and

joined it to the domain directly from the PC itself. Finally, we verified that domain users could

log in successfully, confirming that our automation and domain setup worked as intended.

This project demonstrates how scripting and proper AD structure can streamline user

onboarding in a networked environment—an essential skill in IT administration.

Additional Improvements

Now that the core of the project is done, there are a few improvements I’d like to make

to push it closer to a real-world setup:

Apply Group Policies (GPO)

I’d like to set up Group Policies to control user settings across the domain—things like

enforcing strong passwords, limiting Control Panel access, or setting a default desktop

wallpaper. It’s a good way to maintain consistency and security.

Create Home Folders with Permissions

Another step would be to automatically create personal folders for each user on a shared

drive and assign the right NTFS permissions. This is something you’d see in most

companies and helps keep user files organized and private.

Automate Software Deployment

I’d also add a script or use GPO to push common apps like Chrome, 7-Zip, or antivirus

software to all domain-joined PCs. It would save time and make sure every device has the

tools it needs.

User Offboarding Script

As a follow-up to the onboarding script, I want to create a PowerShell script that can safely

disable or remove users, unassign them from groups, and archive their folders when they

leave the company.

Add Basic Security Auditing

Lastly, I’d enable basic security monitoring—like logging failed login attempts or tracking

user activity with auditpol or Event Viewer. It’s important for knowing what’s happening on

the network and responding to potential issues.

